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Abstract: We consider the theory of gravitational quasi-normal modes for general linear

perturbations of AdS4 black holes. Special emphasis is placed on the effective Schrödinger

problems for axial and polar perturbations that realize supersymmetric partner potential

barriers on the half-line. Using the holographic renormalization method, we compute the

energy-momentum tensor for perturbations satisfying arbitrary boundary conditions at spa-

tial infinity and discuss some aspects of the problem in the hydrodynamic representation.

It is also observed in this general framework that the energy-momentum tensor of black

hole perturbations and the energy momentum tensor of the gravitational Chern-Simons ac-

tion (known as Cotton tensor) exhibit an axial-polar duality with respect to appropriately

chosen supersymmetric partner boundary conditions on the effective Schrödinger wave-

functions. This correspondence applies to perturbations of very large AdS4 black holes

with shear viscosity to entropy density ratio equal to 1/4π, thus providing a dual gravi-

ton description of their hydrodynamic modes. We also entertain the idea that the purely

dissipative modes of black hole hydrodynamics may admit Ricci flow description in the

non-linear regime.
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1. Introduction

The question of stability of the Schwarzschild metric against small perturbations of the

geometry arose more than half century ago in the seminal work of Regge and Wheeler, [1].

Since then, the subject has grown enormously (see, for instance, the selected works [2 – 4],
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among many other important contributions) and developed into what has become known as

the theory of quasi-normal modes (for reviews of the mathematical and physical aspects of

the problem see, for instance, references [5] and [6], respectively). In recent years, the theory

of quasi-normal modes has also been extended to black-hole solutions in space-times with

cosmological constant Λ, and in particular to the AdS4 Schwarzschild background, [7, 8],

which is the subject of this work.

Although the theory of gravitational perturbations of black holes can be studied sys-

tematically in higher dimensions as well, it is important to realize that four space-time

dimensions are rather special in this framework, since they exhibit a remarkable duality

among the two distinct classes of perturbations. The duality exists irrespective of Λ and

connects the effective Schrödinger problems that describe the axial and polar perturbations

of the metric. This relation was first discovered more that thirty years ago, [4] (but see

also reference [5] for an extensive presentation), by considering gravitational perturbations

of the Schwarzschild metric (without cosmological constant) and it gave rise to what has

become known later in the literature as partner potentials in supersymmetric quantum

mechanics, [9, 10]. The axial-polar relation persists in the presence of cosmological con-

stant, [7, 8], although supersymmetric quantum mechanics does not necessarily respect the

boundary conditions imposed on the effective wave-functions at spatial infinity. Yet, there

is no fundamental explanation of this occurrence, to the best of our knowledge, and any

new insight into the problem is certainly welcome. Furthermore, there could be reformu-

lations and/or different manifestations of this duality in areas where the general theory of

quasi-normal modes is applicable.

AdS/CFT correspondence, [11 – 13], and in particular its generalization to finite tem-

perature field theory, [14], provide such a framework using the AdS Schwarzschild solution

as background geometry on the bulk. In fact, many well known facts about the thermody-

namics of AdS black holes, as they were originally formulated by Hawking and Page, [15],

found a natural manifestation in AdS/CFT correspondence, [14]. It was subsequently re-

alized that the theory of quasi-normal modes also had a natural place in this framework,

as it describes small deviations from the equilibrium state in finite temperature field the-

ory, [16]; the inverse time scale for return to equilibrium is given by the (minus) imaginary

part of the corresponding quasi-normal mode. Although scalar field perturbations on AdS

Schwarzschild backgrounds were in focus at first, the holographic description of the gravita-

tional quasi-normal modes were also investigated and led to some important developments.

The calculations are based on the method of holographic renormalization, [17 – 21], which

under the appropriate boundary conditions at spatial infinity yields the energy-momentum

tensor of the gravitational background on the bulk; this method puts on firm ground a

previous proposal for the definition of quasi-local energy in gravitational theories, [22], and

overcomes its limitations. One of the most spectacular results derived in this context in

recent years has been the connection between black holes and relativistic hydrodynamics

and, in particular, the derivation of a universal value for the ratio of shear viscosity to

entropy density, known as KSS bound, [23, 24]. They complement quite nicely the old

ideas on black hole hydrodynamics that led to the membrane paradigm, [25].

AdS4/CFT3 correspondence is less studied in the literature up to this date and some
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new features in the holographic description of four-dimensional gravity may arise. As

far as the previous discussion is concerned, the axial-polar duality among the gravita-

tional perturbations of AdS4 black holes may have an interesting manifestation in the

three-dimensional field theory at the conformal boundary of space-time. Hopefully, it may

also help to explain in more fundamental terms why there is an underlying supersymmet-

ric quantum mechanics in the mathematical description of the gravitational quasi-normal

modes of four-dimensional black holes. Here, we present some new results in this di-

rection and reformulate (at least part of) the problem as black hole energy-momentum

tensor/Cotton tensor duality using general boundary conditions on the wave-functions of

the effective Schrödinger problems for axial and polar perturbations. In this way, the grav-

itational Chern-Simons action on the dual conformal boundary comes into play, since its

energy momentum tensor is by definition the Cotton tensor in three dimensions. Further

details and applications of the correspondence will be presented elsewhere.

The main material of this paper is based on the theory of quasi-normal modes and

the method of holographic renormalization for computing the boundary energy-momentum

tensor. Section 2 contains an overview of the gravitational perturbations of black holes in

four space-time dimensions with emphasis on the AdS4 Schwarzschild background. We will

not include the results of numerical investigations that have been carried out in detail and

appear in several research and review papers. We derive, however, the asymptotic expan-

sion of the metric perturbations at spatial infinity that will be useful in the calculations.

Section 3 contains an account of the holographic computation of the energy-momentum

tensor in four-dimensional linearized Einstein gravity and then proceeds with its evalua-

tion under general boundary conditions on the wave-functions of the effective Schrödinger

equations. Some intermediate steps of the calculations described in sections 2 and 3 are

given in appendices A and B, respectively. Section 4 contains some connections with the

hydrodynamic representation of black hole perturbations, while keeping the presentation

superficially simple, and selects a privileged set of boundary conditions by requiring that

the shear viscosity of axial and polar perturbations to be equal. Section 5 contains as

side remark the idea that the pure dissipative hydrodynamic modes of black hole physics

may be accounted by the normalized Ricci flow (when suitably embedded into Einstein’s

equations with negative cosmological constant) at the non-linear level. Section 6 contains

our main observations on the boundary manifestation of axial-polar duality based on the

general formulae included in this paper. It is also shown the this duality operates en-

tirely within the KSS bound for the ratio of shear viscosity to the entropy density of black

holes, thus providing a correspondence between black hole hydrodynamics and the gravita-

tional Chern-Simons theory. Section 7 contains our conclusions and a small list of selected

directions for future work.

Throughout this paper, we set 8πG = κ2 and Newton’s constant is normalized as G = 1

in the Schwarzschild metric. The boundary conditions (Dirichlet or mixed) always refer to

the wave-functions of the effective Schrödinger problems at spatial infinity and not to the

metric perturbations themselves; of course one follows from the other. We will also abuse

the term “supersymmetric quantum mechanics”, since there are no fermions here. The term

“spatial infinity” will always refer to r = ∞ in the radial direction of space-time. Finally,
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the perturbations of the metric (and related geometric quantities) are complex for each

quasi-normal mode. Apparently, real expressions will arise by appropriate superposition,

although it is not yet known (as far as we can tell from the literature) whether these modes

form a complete set in the strict mathematical sense.

2. Gravitational perturbations of AdS4 black holes

In this section we review the basic features of linear perturbations around the four dimen-

sional Schwarzschild background,

gµν = g(0)
µν + δgµν , (2.1)

using the canonical decomposition of δgµν into two distinct classes called axial and polar

perturbations, [1]. The resulting theory of quasi-normal modes is formulated in the presence

of cosmological constant and some special features of AdS4 black holes are discussed in

detail (see also [7, 8]). Hopefully, the present exposition can be of more general value to

the interested reader, as it contains a number of explicit results together with the companion

appendix A.

2.1 Generalities

First, we recall for notational purposes some basic facts about black holes that will be used

throughout this paper.

Einstein equations in four space-time dimensions with cosmological constant Λ,

Rµν = Λgµν , (2.2)

admit the Schwarzschild solution as spherically symmetric static configuration of the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(

dθ2 + sin2θdφ2
)

(2.3)

with

f(r) = 1 − 2m

r
− Λ

3
r2 (2.4)

having the appropriate asymptotic behavior fixed by Λ.

The Schwarzschild radius of AdS4 black holes is provided by the real root of f(r) = 0

occurring at

rh =
1√
−Λ

[

(
√

1 − 9m2Λ + 3m
√
−Λ

)1/3
−
(
√

1 − 9m2Λ − 3m
√
−Λ

)1/3
]

. (2.5)

Thus, the black hole radius takes values 0 < rh < 2m depending on the size of Λ. When Λ

approaches zero, rh tends to 2m, whereas for Λ ≪ 0, rh comes close to 0.

It is also useful to introduce the tortoise coordinate r⋆ which is defined by

dr⋆ =
dr

f(r)
. (2.6)
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When Λ = 0, r⋆ ranges from −∞ to +∞, as r ranges from the black hole horizon located

at r = rh to infinity. But when Λ < 0, which is of interest here, r⋆ ranges from −∞ up

to some finite value that can be set equal to zero by appropriate choice of the integration

constant. For AdS4 black holes, in particular, we have explicitly

r⋆ =
rh

4(rh − 3m)

(

rh log
(2r + rh)

2 + a2

4(r − rh)2
+ 2a

rh − 6m

rh + 6m

[

arctan
2r + rh

a
− π

2

])

(2.7)

setting for convenience

a =

√

− 3

Λ

(

1 +
6m

rh

)

. (2.8)

AdS black holes come in different sizes and their thermodynamic properties depend

crucially on the magnitude of rh relative to the AdS radius

L =

√

− 3

Λ
. (2.9)

Large black holes have rh > L and become the dominant configurations at high tempera-

tures, whereas small black holes have rh < L and they are always unstable to decay either

into pure thermal radiation or to black holes with larger mass. In general we have the

following relation among the parameters of the AdS4 Schwarzschild background

m − rh =
1

2L2
rh

(

r2
h − L2

)

. (2.10)

Thus, large black holes have rh < m, whereas small black holes have rh > m.

Finally, we recall that very large black holes are naturally associated to the limit

rh → ∞, in which case f(r) is replaced by

f(r) = −2m

r
− Λ

3
r2 (2.11)

by dropping the constant term. Then, the black holes become essentially flat and their

horizon is related to the other parameters by the simple expression

r3
h = −6m

Λ
. (2.12)

2.2 Axial (odd) perturbations

The first class of metric perturbations of four dimensional black holes is tabulated by

matrices labeled by (t, r, θ, φ) of the following form

δgµν =

























0 0 0 h0(r)

0 0 0 h1(r)

0 0 0 0

h0(r) h1(r) 0 0

























e−iωtsinθ ∂θPl(cosθ) , (2.13)
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using the Legendre polynomials Pl(cosθ). More general expressions in terms of spherical

harmonics Y m
l (θ, φ) can also be employed, but one may only use axially symmetric pertur-

bations, setting m = 0 without loss of generality. Axial perturbations correspond to the so

called vector sector or shear channel in the dictionary of AdS/CFT correspondence.

The linear gravitational perturbations δRµν = Λδgµν about the Schwarzschild back-

ground yield the following equation for the (θφ)-component,

h0(r) = i
f(r)

ω
(f(r)h1(r))

′ , (2.14)

whereas the equation for the (rφ)-component reads

2

r
h0(r) − h′

0(r) = i
f(r)

ω

(

ω2

f(r)
− (l − 1)(l + 2)

r2

)

h1(r) . (2.15)

These form a coupled system of first order differential equations for the unknown func-

tions h0(r) and h1(r), which are otherwise unrelated. The (tφ)-component gives rise to

a second order differential equation, which, however, is trivially satisfied by virtue of the

previous two equations. All other components of δRµν are identically zero and yield no

further conditions.

Following Regge and Wheeler, [1], we define the following variable

ΨRW(r) =
f(r)

r
h1(r) , (2.16)

which turns out to satisfy the effective one-dimensional Schrödinger equation
(

− d2

dr2
⋆

+ VRW(r)

)

ΨRW(r) = ω2ΨRW(r) (2.17)

with respect to the tortoise coordinate r⋆ with potential

VRW(r) = f(r)

(

l(l + 1)

r2
− 6m

r3

)

. (2.18)

Thus, one is led to consider solutions of the Regge-Wheeler-Schrödinger problem by im-

posing appropriate boundary conditions (typically ingoing at the black hole horizon and

outgoing at spatial infinity), which in turn can determine ΨRW(r) (and hence h1(r) and

subsequently h0(r)) together with the allowed spectrum of quasi-normal mode frequencies

ω.

VRW depend on l and represent spherically symmetric potentials surrounding the black

hole. Plotting the potentials as function of the tortoise radial coordinate can only be made

numerically because r cannot be expressed in terms of r⋆ in closed form. For Λ = 0 the

potentials are manifestly positive everywhere and extend on the real line −∞ < r⋆ < ∞
falling off to zero at both ends. For Λ < 0, on the other hand, the potentials extend on the

half-line −∞ < r⋆ ≤ 0, becoming zero on the horizon and reaching a finite positive value at

spatial infinity. In this case, however, VRW are not always everywhere positive definite, but

they can become negative for sufficiently low values of l, namely for large black holes with

m

rh
>

l(l + 1)

6
, (2.19)
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thus exhibiting a laguna. Although the differences between large and small AdS4 black

holes leave their footprints on the shape of the effective potential barriers for sufficiently

small values of l, their plots are alike for large values of l exhibiting a maximum peak

followed by a local minimum as r increases towards spatial infinity.

2.3 Polar (even) perturbations

This is a complementary class of metric perturbations parametrized by four arbitrary radial

functions of the general form

δgµν =

























f(r)H0(r) H1(r) 0 0

H1(r) H2(r)/f(r) 0 0

0 0 r2K(r) 0

0 0 0 r2K(r)sin2θ

























e−iωtPl(cosθ) (2.20)

They correspond to the so called scalar sector or sound channel in the dictionary of

AdS/CFT correspondence. Study of such linear perturbations δRµν = Λgµν about the

Schwarzschild background yields

H0(r) = H2(r) . (2.21)

This choice will be made from the beginning to simplify the remaining equations.

Tedious computation shows that the (tr)- (rθ)- and (tθ)-components of the perturba-

tion yield the following equations, respectively,

rK ′(r) +

(

1 − rf ′(r)

2f(r)

)

K(r) − H0(r) − i
l(l + 1)

2ωr
H1(r) = 0 , (2.22)

(f(r)H0(r))
′ − f(r)K ′(r) + iωH1(r) = 0 , (2.23)

(f(r)H1(r))
′ + iω (H0(r) + K(r)) = 0 . (2.24)

Together they form a coupled system of first order differential equations for the three

unknown functions H0(r), H1(r) and K(r). The other components of the perturbation

either yield second order equations or else δRµν vanishes identically. Note here, however,

that there is an additional algebraic condition among the three radial functions

(

2f(r) − rf ′(r) − l(l + 1)
)

H0(r) +
i

2ω

(

4ω2r − l(l + 1)f ′(r)
)

H1(r) = (2.25)
(

2f(r) + rf ′(r) − l(l + 1) + 2Λr2 +
r2

2f(r)

(

4ω2 + f ′2(r)
)

)

K(r) ,

which follows from consistency of the various second order equations with the first order

system above; it can also be viewed as integral of the first order system above.

Following Zerilli, [2], we now define the following variable

ΨZ(r) =
r2

(l − 1)(l + 2)r + 6m

(

K(r) − i
f(r)

ωr
H1(r)

)

, (2.26)
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which turns out to satisfy an effective Schrödinger equation, as before,

(

− d2

dr2
⋆

+ VZ(r)

)

ΨZ(r) = ω2ΨZ(r) (2.27)

with different potential,

VZ(r) =
f(r)

[(l − 1)(l + 2)r + 6m]2

(

l(l + 1)(l − 1)2(l + 2)2 − 24m2Λ (2.28)

+
6m

r
(l − 1)2(l + 2)2 +

36m2

r2
(l − 1)(l + 2) +

72m3

r3

)

.

Again, one has to find solutions and determine the quasi-normal mode spectrum under

appropriate boundary conditions, as before. This will, in turn, lead to expressions for the

three unknown radial functions of polar perturbations.

As before, VZ depend on l and represent spherically symmetric potential barriers sur-

rounding the black hole, which are always positive definite reaching a finite value at spatial

infinity. For Λ < 0, the shape of the potential depends on the size of the black hole. In fact,

VZ appear to increase monotonically for large black holes with sufficiently low values of l,

whereas for large values of l they exhibit a maximum peak followed by a local minimum

as r increases towards spatial infinity. In these cases, VZ resemble the shape of VRW, but

they rise higher than them for given l.

2.4 Supersymmetric partner potentials

The Regge-Wheeler and Zerilli potentials admit the following representation

VRW(r) = W 2(r) − dW (r)

dr⋆
+ ω2

s (2.29)

and

VZ(r) = W 2(r) +
dW (r)

dr⋆
+ ω2

s (2.30)

in terms of a suitably chosen real (positive) function, [4, 5, 7] (but see also [8])

W (r) =
6mf(r)

r[(l − 1)(l + 2)r + 6m]
+ iωs , (2.31)

setting

ωs = − i

12m
(l − 1)l(l + 1)(l + 2) . (2.32)

Thus, the two Schrödinger problems under investigation take the closely related form

(

− d2

dr2
⋆

+ W 2 ∓ dW

dr⋆

)

Ψ(r⋆) = (ω2 − ω2
s )Ψ(r⋆) (2.33)

and resemble supersymmetric partner potentials generated by the superpotential W (r⋆), [4,

5, 7]. The quantity E = ω2 − ω2
s serves as the energy of the effective quantum mechanical

problem, but unlike conventional supersymmetric quantum mechanics, [9, 10], it is not

bounded below by zero. In fact, due to the physical boundary conditions imposed on the

– 8 –
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wave functions associated to perturbations of black holes, the quantum theory is that of

an open system and the energies (and hence ω) are in general complex.

Due to this relation, which is only present in four space-time dimensions, the solutions

are inter-connected using the conjugate pair of first order operators

A =
d

dr⋆
+ W (r⋆) , A† = − d

dr⋆
+ W (r⋆) . (2.34)

The two effective Hamiltonians are simply written as

HRW = A†A + ω2
s , HZ = AA† + ω2

s . (2.35)

Then, if ΨRW(r⋆) is a solution of the Regge-Wheeler equation with frequency ω, the function

AΨRW(r⋆) = i(ωs − ω)ΨZ(r⋆) (2.36)

will be solution of the Zerilli equation with the same frequency. Likewise, a solution of the

Zerilli equation with frequency ω gives rise to solution of the Regge-Wheeler equation with

the same frequency, as

A†ΨZ(r⋆) = i(ωs + ω)ΨRW(r⋆) . (2.37)

These relations are particularly useful for justifying mixed boundary conditions on the

wave functions. For Λ < 0, one typically imposes perfectly reflecting Dirichlet boundary

conditions on the wave functions at spatial infinity located at r⋆ = 0. If the axial and polar

perturbations satisfy simultaneously

ΨRW(r⋆ = 0) = 0 = ΨZ(r⋆ = 0) (2.38)

supersymmetric quantum mechanics will also imply the Neumann boundary conditions

d

dr⋆
ΨRW(r⋆) |r⋆=0= 0 =

d

dr⋆
ΨZ(r⋆) |r⋆=0 , (2.39)

which are too restrictive to hold all together. The conflict is resolved either by abandoning

supersymmetry, meaning that the spectrum of quasi-normal modes of axial and polar

perturbations is taken to be different, or by imposing mixed boundary conditions as dictated

by equations (2.36) and (2.37) above.

We also note for completeness that when Λ = 0 the boundary conditions imposed at

spatial infinity, namely outgoing waves for either axial or polar perturbations, are compat-

ible with supersymmetric quantum mechanics.

2.5 Asymptotic expansions at spatial infinity

The wave functions ΨRW(r) and ΨZ(r) represent incoming waves to the black-hole. There-

fore, they have the following asymptotic expansion close to the horizon, following closely

the analysis of reference [16],

Ψ(r) =

∞
∑

n=0

an

(

1 − rh

r

)n
e−iωr⋆ . (2.40)

– 9 –
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In either case, the coefficients an depend upon ω. They satisfy a three-term recursion rela-

tion when substituted into the Regge-Wheeler equation and a five-term recursion relation

when substituted into the Zerilli equation. Both power series expansions make good sense

for all r when Λ < 0, because their radius of convergence extends to infinity. Then, the

boundary conditions at spatial infinity impose additional constraints on the coefficients an,

which in turn determine the spectrum of allowed quasi-normal modes of AdS4 black holes

by numerical methods.

Here, we will reorganize the series expansion of the wave functions in powers of 1/r

to provide their asymptotic behavior at spatial infinity for Λ < 0. The coefficients will be

determined up to the order relevant for the computation of the energy-momentum tensor

for axial and polar perturbations of AdS4 black holes. Thus, these coefficients will be

obtained under general boundary conditions, but in the applications specific choices will

be made at spatial infinity.

(i) Axial perturbations: the asymptotic expansion of the Regge-Wheeler wave function

at spatial infinity is taken to be

ΨRW(r) =

(

I0 +
I1

r
+

I2

r2
+

I3

r3
+ · · ·

)

e−iωr⋆ , (2.41)

where the coefficients Ik depend upon ω and they are determined recursively from I0 and

I1 as

2Λ

3
I2 = 2iωI1 − l(l + 1)I0 , (2.42)

2ΛI3 = 4iωI2 − (l − 1)(l + 2)I1 + 6mI0 (2.43)

and so on. The boundary conditions at spatial infinity are solely expressed in terms of I0

and I1.

The asymptotic expansion of the metric functions h0(r) and h1(r) near spatial infinity

are given in all generality by

h0(r) =

(

α0r
2 + β0r + γ0 +

δ0

r
+ · · ·

)

e−iωr⋆ , (2.44)

h1(r) =

(

α1

r
+

β1

r2
+ · · ·

)

e−iωr⋆ , (2.45)

where the coefficients can be found in appendix A after expressing them in terms of I0 and

I1 for convenience.

(ii) Polar perturbations: likewise, the asymptotic expansion of the Zerilli wave function

at spatial infinity is taken to be

ΨZ(r) =

(

J0 +
J1

r
+

J2

r2
+

J3

r3
+

J4

r4
+ · · ·

)

e−iωr⋆ , (2.46)
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where Jk depend upon ω and they are determined recursively from J0 and J1 via the

relations

2Λ

3
J2 = 2iωJ1 −

(

l(l + 1) − 24m2Λ

(l − 1)2(l + 2)2

)

J0 , (2.47)

2ΛJ3 = 4iωJ2 −
(

(l − 1)(l + 2) − 24m2Λ

(l − 1)2(l + 2)2

)

J1 +

+
6m

(l − 1)(l + 2)

(

l(l + 1) + 2 − 48m2Λ

(l − 1)2(l + 2)2

)

J0 , (2.48)

4ΛJ4 = 6iωJ3 −
(

l(l + 1) − 6 − 24m2Λ

(l − 1)2(l + 2)2

)

J2 +

+
24m

(l − 1)(l + 2)

(

1 − 12m2Λ

(l − 1)2(l + 2)2

)

J1 −

− 72m2

(l − 1)2(l + 2)2

(

l(l + 1) + 1 − 36m2Λ

(l − 1)2(l + 2)2

)

J0 (2.49)

and so on. The boundary conditions at spatial infinity are solely expressed in terms of J0

and J1, in analogy with the axial perturbations.

The asymptotic expansion of the metric functions H0(r), H1(r) and K(r) take the

following form at spatial infinity,

H0(r) =
3m

(l − 1)(l + 2)

(

A0

r
+

B0

r2
+

C0

r3
+ · · ·

)

e−iωr⋆ , (2.50)

H1(r) = −3iω

Λ

(

A1

r
+

B1

r2
+

C1

r3
+ · · ·

)

e−iωr⋆ , (2.51)

K(r) =

(

R +
A

r
+

B

r2
+

C

r3
+ · · ·

)

e−iωr⋆ . (2.52)

The computations are much more involved now and the various coefficients are given ex-

plicitly in appendix A expressing them in terms of J0 and J1 alone.

These expansions are consistent with the differential equations as well as with the

algebraic constraint satisfied by the metric functions of axial and polar perturbations with

generic boundary conditions. We also note for completeness that the wave functions could

have been expanded differently, e.g.,

ΨRW(r) =

(

I ′0 +
I ′1
r

+
I ′2
r2

+ · · ·
)

eiωr⋆ , (2.53)

resembling the form of outgoing (rather than incoming) waves at spatial infinity. The

two expressions are equivalent provided that I ′0 = I0, I ′1 = I1 − (6iω/Λ)I0, etc, using the

asymptotic expansion r⋆ = 3/(Λr) + · · ·. Similar remarks apply to the expansion of ΨZ(r)

at spatial infinity.

(iii) Supersymmetric partner boundary conditions: if the spectrum of axial and

polar perturbations are related by supersymmetric quantum mechanics, one should adopt

mixed boundary conditions at spatial infinity that are consistent with the general relation
(

− d

dr⋆
+ W (r⋆)

)

ΨZ(r⋆) = i(ωs + ω)ΨRW(r⋆) . (2.54)
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Then, the coefficients J0 and J1 arising in the asymptotic expansion of ΨZ(r) should be

related to the corresponding coefficients I0 and I1 of ΨRW(r) as

i(ωs − ω)J0 =
Λ

3
I1 +

(

i(ωs − ω) − 2mΛ

(l − 1)(l + 2)

)

I0 , (2.55)

i(ωs − ω)J1 =

(

i(ωs + ω) − 2mΛ

(l − 1)(l + 2)

)

I1 −
(

l(l + 1) − 12m2Λ

(l − 1)2(l + 2)2

)

I0 , (2.56)

Conversely, we also have

i(ωs + ω)I0 = −Λ

3
J1 +

(

i(ωs + ω) − 2mΛ

(l − 1)(l + 2)

)

J0 , (2.57)

i(ωs + ω)I1 =

(

i(ωs − ω) − 2mΛ

(l − 1)(l + 2)

)

J1 +

(

l(l + 1) − 12m2Λ

(l − 1)2(l + 2)2

)

J0 . (2.58)

The simplest possibility of this kind is to impose Dirichlet boundary condition on the

axial perturbations and mixed boundary condition on the polar perturbations, so that the

coefficients are fixed by the relations

I0 = 0 , I1 =
3i

Λ
(ωs − ω)J0 , J1 =

3

Λ

(

i(ωs + ω) − 2mΛ

(l − 1)(l + 2)

)

J0 . (2.59)

Other special choices of boundary conditions will be made later.

2.6 The sign of Imω

The perturbations diminish at late times provided that Imω < 0, in which case

τ = − 1

Imω
(2.60)

provides the characteristic time scale for return to equilibrium. Otherwise, the perturba-

tions grow large at spatial infinity and stability is at stake; also, in such cases, the linear

approximation can not be reliably used to extract the late time behavior of the energy-

momentum tensor on the boundary. The sign of Imω can be shown to be negative when

perfectly reflecting boundary conditions are imposed at spatial infinity for the polar per-

turbations and the same is true for the axial perturbations, at least in those cases that the

Regge-Wheeler potential does not form a laguna. Different boundary conditions at spatial

infinity may affect the sign of Imω for some modes in the spectrum, but there is no general

proof that this is indeed the case.

The standard analytic argument to address this question, [16] (but see also [7]), and

which is extended here to general boundary conditions, starts with the observation that

the substitution Ψ(r) = u(r)exp(−iωr⋆) yields the differential equation

d

dr

(

f(r)
du(r)

dr

)

− 2iω
du(r)

dr
− V (r)

f(r)
u(r) = 0 (2.61)

for either Regge-Wheeler or Zerilli potentials. Multiplying it with the complex conjugate

function ū(r) and integrating over r, we obtain (after integrating by parts the first term)
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the following relation,

∫ ∞

rh

dr

(

f(r)

∣

∣

∣

∣

du(r)

dr

∣

∣

∣

∣

2

+ 2iωū(r)
du(r)

dr
+

V (r)

f(r)
|u(r)|2

)

= f(r)ū(r)
du(r)

dr
|r=∞ . (2.62)

The right-hand side is simply (Λ/3)J1J̄0 (respectively (Λ/3)I1Ī0) for polar (respectively

axial) perturbations satisfying general boundary conditions. Taking the imaginary part

of this integral equation, let us say for polar perturbations, and integrating by parts the

complex conjugate term, we obtain

2i Imω

∫ ∞

rh

drū(r)
du(r)

dr
=

Λ

3
Im(J1J̄0) − ω̄

(

|J0|2 − |u(rh)|2
)

. (2.63)

This expression yields, upon substitution into the original equation, the final result

∫ ∞

rh

dr

(

f(r)

∣

∣

∣

∣

du(r)

dr

∣

∣

∣

∣

2

+
VZ(r)

f(r)
|u(r)|2

)

=
Λ

3
J1J̄0 −

Λ

3
Im(J1J̄0)

ω

Imω
+ (2.64)

+
|ω|2
Imω

(

|J0|2 − |u(rh)|2
)

.

The left-hand side is positive definite and therefore Imω < 0 when J0 = 0. This argument

is certainly inconclusive for more general boundary conditions. For axial perturbations the

coefficients are replaced by I0 and I1 but the corresponding potential VRW can become

negative for large black-holes when l is sufficiently low. Thus, in those cases, the analytic

argument becomes inconclusive, even for I0 = 0, but numerical analysis shows that all such

modes have Imω < 0.

In the following, we will assume that the spectrum of quasi-normal modes have neg-

ative imaginary part either by selecting boundary conditions for which this is manifest,

by the argument above, or by employing numerical methods to pin down those boundary

conditions that yield Imω < 0.

3. Holographic energy-momentum tensor

In this section, we briefly review the construction of the boundary energy-momentum

tensor for AdS gravity, following [20], and apply it to the Schwarzschild solution and its

perturbations. The same results can be obtained using Fefferman-Graham coordinates, as

in the more systematic analysis of holographic renormalization presented in references [17 –

19, 21]. The companion appendix B summarizes the results of intermediate steps in the

calculation.

3.1 General considerations

According to the AdS/CFT correspondence, the vacuum expectation value of the energy-

momentum tensor of the boundary quantum field theory,

< T ab >=
2√

−detγ

δSeff

δγab
, (3.1)
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is computed using the quasi-local energy-momentum tensor of a gravitational bulk ac-

tion Sgr,

T ab =
2√

−detγ

δSgr

δγab
. (3.2)

The action Sgr which is defined on an asymptotically AdS space-time M is viewed as

functional of the boundary metric γab on ∂M . The resulting T ab typically diverge, but it is

always possible to obtain finite results by adding an appropriately chosen boundary counter-

term whose form depends on the dimensionality of space-time. Holographic renormalization

provides a well defined prescription for implementing the Brown-York procedure, [22],

without using a reference space-time to subtract the infinities.

In AdS4/CFT3 correspondence, in particular, the gravitational action consists of bulk

and boundary terms chosen as follows, [20],

Sgr = − 1

2κ2

∫

M
d4x
√

−detg (R[g] + 2Λ) − 1

κ2

∫

∂M
d3x
√

−detγ K

− 2

κ2

√

−Λ

3

∫

∂M
d3x
√

−detγ

(

1 +
3

4Λ
R[γ]

)

. (3.3)

The first boundary contribution is the usual Gibbons-Hawking term written in terms of

the trace of the second fundamental form, i.e., the extrinsic mean curvature

K = γabKab , (3.4)

associated to the embedding of ∂M in M . The second boundary contribution is the contact

term needed to remove all divergencies in the present case.

Then, according to definition, the energy-momentum tensor of the field theory is ex-

pressed in terms of the intrinsic and extrinsic geometry of the AdS boundary at infinity, as

κ2Tab = Kab − Kγab − 2

√

−Λ

3
γab +

√

− 3

Λ
Gab . (3.5)

Here, Gab denotes the Einstein tensor of the induced three-dimensional metric γab,

Gab = Rab[γ] − 1

2
R[γ]γab . (3.6)

Clearly, only boundary terms contribute to the answer since the bulk metric is always taken

to satisfy the classical gravitational equations of motion.

In practice, the computation is performed by first writing the metric g on M in the form

ds2 = N2dr2 + γab (dxa + Nadr)
(

dxb + N bdr
)

(3.7)

using appropriately chosen (N,Na) functions, as in an ADM-like decomposition. The

three-dimensional surface arising at fixed distance r serves as boundary ∂Mr to the interior

four-dimensional region Mr. The induced metric on ∂Mr is γab evaluated at the boundary

value of r, which is held finite at this point. A useful relation among the bulk and boundary

metrics is
√

−detg = N
√

−detγ . (3.8)
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The second fundamental form Kab on ∂Mr is defined using the outward pointing normal

vector ηµ to the boundary ∂Mr with components

ηµ = N δr
µ . (3.9)

In particular, one has

Kab = −∇(aηb) , (3.10)

using the covariant derivatives with respect to the bulk metric g; in the present case the

expressions simplify to

Kab = N Γr
ab[g] . (3.11)

At the end of the computation, T ab on the AdS boundary ∂M is obtained by letting r → ∞.

Since the boundary metric acquires an infinite Weyl factor as r is taken to infinity, it

is more appropriate to think of the AdS boundary as a conformal class of boundaries and

define I as the boundary space-time with metric

ds2
I = lim

r→∞

(

− 3

Λr2
γabdxadxb

)

. (3.12)

Then, the renormalized energy-momentum tensor on I is defined accordingly by

T renorm
ab = lim

r→∞

(
√

−Λ

3
r Tab

)

(3.13)

and it is finite. This is the quantity that we will compute for all different type of gravita-

tional perturbations of AdS4 black holes.

As for the trace of the energy-momentum tensor on the three-dimensional bound-

ary ∂Mr,

κ2T a
a = −2K − 1

2

√

− 3

Λ
R[γ] − 6

√

−Λ

3
, (3.14)

it has the following leading behavior for large r,

T a
a ∼ 1

r4
. (3.15)

Terms of order 1/r3 are vanishing in this case by the absence of conformal anomalies in

three dimensions, [17], and, therefore, the trace of the renormalized energy-momentum

tensor vanishes.

3.2 Static AdS4 black holes

We first apply the formalism to the simple example of static AdS4 Schwarzschild solution

that will be subsequently used as reference frame to study the effect of linear perturbations.

All steps of the calculation are included for illustrative reasons.

In this case, we have the following choice of (N,Na) functions,

N =
1

√

f(r)
, Na = 0 , (3.16)
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and the induced metric on ∂Mr is

γab =















−f(r) 0 0

0 r2 0

0 0 r2sin2θ















. (3.17)

The second fundamental form turns out to be

Kab =
√

f(r)















f ′(r)/2 0 0

0 −r 0

0 0 −rsin2θ















(3.18)

and its trace is

K = − 1

2r
√

f(r)

(

rf ′(r) + 4f(r)
)

. (3.19)

Also, the Ricci curvature tensor of the induced metric γ takes the simple form

Rab[γ] =















0 0 0

0 1 0

0 0 sin2θ















(3.20)

and the Ricci scalar curvature is

R[γ] =
2

r2
. (3.21)

Then, following the general prescription for computing the energy-momentum tensor

in AdS gravity, we find the following expressions on ∂Mr,

κ2Ttt =
f(r)

r2

(

√

− 3

Λ
+ 2r2

√

−Λ

3
− 2r

√

f(r)

)

, (3.22)

κ2Tθθ =
r

√

f(r)

(

f(r) +
r

2
f ′(r)

)

− 2r2

√

−Λ

3
(3.23)

and Tφφ = sin2θ Tθθ, whereas all other components are zero.

As r → ∞, ∂Mr is pushed away to spatial infinity and the energy-momentum tensor

admits the following asymptotic expansion

κ2Ttt =
2m

r

√

−Λ

3
+

1

4r2

√

− 3

Λ
+ O

(

1

r3

)

, (3.24)

κ2Tθθ =
m

r

√

− 3

Λ
+

1

4r2

(

√

− 3

Λ

)3

+ O
(

1

r3

)

, (3.25)
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whereas Tφφ = sin2θ Tθθ, as before. Note at this point that the trace of the energy-

momentum tensor is

κ2T a
a =

1

4r4

(

√

− 3

Λ

)3

+ O
(

1

r5

)

(3.26)

exhibiting the correct asymptotic behavior due to the absence of conformal anomaly.

The three-dimensional metric on I is the Lorentzian conformally flat metric on R×S2

written in spherical coordinates,

ds2
I = −dt2 − 3

Λ
(dθ2 + sin2θdφ2) . (3.27)

The renormalized energy-momentum tensor of the boundary theory has the following non-

vanishing components

κ2T
(0)
tt = −2mΛ

3
, κ2T

(0)
θθ = m , κ2T

(0)
φφ = m sin2θ , (3.28)

reproducing the expressions already known in the literature. The superscript (0) is used

for reference to the static background.

3.3 Axial perturbations

Axial perturbations of AdS Schwarzschild black-holes are parametrized by two radial func-

tions h0(r) and h1(r). The four-dimensional metric has coefficients

N =
1

√

f(r)
, Nφ = h1(r)e

−iωtsinθ ∂θPl(cosθ) , Nt = 0 = Nθ (3.29)

and the induced three-dimensional metric on ∂Mr is a perturbation of the static metric

γab = γ
(0)
ab +















0 0 h0(r)

0 0 0

h0(r) 0 0















e−iωtsinθ ∂θPl(cosθ) . (3.30)

The second fundamental form is also a perturbation of the second fundamental form

of the static solution,

Kab = K
(0)
ab + δKab (3.31)

and the same thing applies to the Ricci curvature tensor of the metric γab,

Rab[γ] = R
(0)
ab + δRab . (3.32)

However, the traces of Kab and Rab are inert to the perturbations, i.e.,

K = K(0), R[γ] = R(0) , (3.33)

which in turn imply that the trace of the boundary energy-momentum tensor coincides

with the result obtained earlier for the static background,

T a
a = T (0)a

a . (3.34)
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This can be regarded as consistency check for the cancelation of conformal anomalies for

axial perturbations of the metric.

The complete energy-momentum tensor of the boundary theory on ∂Mr assumes the

following form,

Tab = T
(0)
ab +















0 0 δTtφ

0 0 δTθφ

δTtφ δTθφ 0















, (3.35)

where δTtφ and δTθφ are given explicitly in appendix B.

Using the asymptotic expansion of the metric functions h0(r) and h1(r) at spatial

infinity, as given in appendix A, we find that all divergencies of δTab cancel as r → ∞
irrespective of boundary conditions. In particular, after conformal rescaling, the three-

dimensional metric on I takes the form

ds2
I = −dt2 − 3

Λ

(

dθ2 + sin2θdφ2
)

+ 2
iI0

ω
e−iωtsinθ ∂θPl(cosθ) dtdφ (3.36)

and the non-vanishing components of the axial perturbations of the renormalized energy-

momentum tensor are

κ2δTtφ = − iΛ

6ω

(

2mI0 + (l − 1)(l + 2)

(

3iω

Λ
I0 − I1

))

e−iωtsinθ ∂θPl(cosθ) , (3.37)

κ2δTθφ =
1

2

(

3iω

Λ
I0 − I1

)

e−iωtsinθ[l(l + 1) Pl(cosθ) + 2cotθ ∂θPl(cosθ)] . (3.38)

It can be verified independently, as consistency check, that the total energy-momentum

tensor is traceless and conserved on I .

3.4 Polar perturbations

Polar perturbations of AdS Schwarzschild black-holes are parametrized by three radial

functions H0(r), H1(r) and K(r). In this case, the four-dimensional metric admits an

ADM-like decomposition with coefficients

N =
1

√

f(r)

(

1 +
1

2
H0(r)e

−iωtPl(cosθ)

)

(3.39)

and

Nt = H1(r)e
−iωtPl(cosθ) , Nθ = 0 = Nφ . (3.40)

Also, the induced three-dimensional metric on ∂Mr is a perturbation of the static metric

with diagonal form

γab = γ
(0)
ab +















f(r)H0(r) 0 0

0 r2K(r) 0

0 0 r2K(r)sin2θ















e−iωtPl(cosθ) . (3.41)
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The second fundamental form is a perturbation of the corresponding static expression,

as before, and the same thing applies to the Ricci curvature tensor of the corresponding

metric γab. It turns out that the trace of the second fundamental form for polar perturba-

tions is

K = K(0) +

(

1

4
√

f(r)

(

f ′(r)H0(r) + 2f(r)H ′
0(r) + 4iωH1(r)

)

(3.42)

+
1

r

√

f(r)
(

H0(r) − rK ′(r)
)

)

e−iωtPl(cosθ)

and the Ricci curvature scalar is

R[γ] = R(0) − 1

r2

((

2
ω2r2

f(r)
− (l − 1)(l + 2)

)

K(r) + l(l + 1)H0(r)

)

e−iωtPl(cosθ) . (3.43)

Note that δRφφ 6= sin2θ δRθθ, which will in turn imply that δTφφ 6= sin2θ δTθθ for the

corresponding components of the energy-momentum tensor. It follows that the trace of

the boundary energy-momentum on ∂Mr is not inert to these perturbations, since

κ2T a
a = κ2T (0)a

a −
((

2

r

√

f(r) +
f ′(r)

2
√

f(r)
− l(l + 1)

2r2

√

− 3

Λ

)

H0(r)

+
√

f(r) H ′
0(r) −

1

2r2

√

− 3

Λ

(

2
ω2r2

f(r)
− (l − 1)(l + 2)

)

K(r)

−2
√

f(r) K ′(r) +
2iω
√

f(r)
H1(r)

)

e−iωtPl(cosθ) . (3.44)

However, as we will see shortly, the additional terms are of order O(1/r4) when r → ∞, in

agreement with the cancelation of conformal anomalies.

The complete energy-momentum tensor of the boundary theory on ∂Mr takes a form

that is complementary to the corresponding expression for axial perturbations, namely

Tab = T
(0)
ab +















δTtt δTtθ 0

δTtθ δTθθ 0

0 0 δTφφ















, (3.45)

where the corresponding expressions are given explicitly in appendix B.

Using the asymptotic expansion of the metric functions H0(r), H1(r) and K(r) at

spatial infinity, as given in appendix A, we find that all divergencies cancel as r → ∞
irrespective of boundary conditions and all works well as required on general grounds. In

this case, the three-dimensional metric on the boundary takes the following form, after

conformal rescaling,

ds2
I = −dt2 − 3

Λ
[1 + Re−iωtPl(cosθ)](dθ2 + sin2θdφ2) , (3.46)
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where R = K(r = ∞) is the following function of ω

R =
Λ

3
J1 −

(

iω − 2mΛ

(l − 1)(l + 2)

)

J0 . (3.47)

Explicit calculation shows that the non-vanishing components of the polar perturba-

tions of the renormalized energy-momentum tensor are:

κ2δTtt = mΛ(R − iωsJ0)e
−iωtPl(cosθ) , (3.48)

κ2δTθθ =
1

4

(

4m
l(l + 1) + 1

(l − 1)(l + 2)
R − l(l + 1)

(

1 +
3ω2

Λ

)

J0

)

e−iωtPl(cosθ) +

+
1

4

(

12mR

(l − 1)(l + 2)
−
(

l(l + 1) +
6ω2

Λ

)

J0

)

e−iωtcotθ ∂θPl(cosθ), (3.49)

κ2δTφφ = −1

4

(

4m
2l(l + 1)−1

(l−1)(l+2)
R − l(l + 1)

(

l(l + 1)−1+
3ω2

Λ

)

J0

)

e−iωtsin2θPl(cosθ) −

−1

4

(

12mR

(l − 1)(l + 2)
−
(

l(l + 1) +
6ω2

Λ

)

J0

)

e−iωtsinθcosθ ∂θPl(cosθ) , (3.50)

κ2δTtθ =
1

4
iω(l − 1)(l + 2)J0e

−iωt∂θPl(cosθ) . (3.51)

It can be verified, as consistency check, that the complete energy-momentum tensor is

traceless and conserved on I .

Note that the renormalized δTtt vanishes only when R = iωsJ0. These are mixed

boundary conditions for the polar perturbations that are supersymmetric partner to per-

fectly reflecting boundary conditions, I0 = 0, for the axial perturbations.

4. Hydrodynamic representation

The energy-momentum tensor associated to the static AdS4 black hole represents a perfect

conformal fluid on the three-dimensional boundary with metric g
(0)
ab , velocity vector ua =

(−1, 0, 0) and energy density

κ2ρ = −2mΛ

3
. (4.1)

Thus, it makes sense to compare the fluctuations of the energy-momentum tensor for linear

perturbations of black holes with the theory of first order hydrodynamics. The comparison

is only formal in the general case, but the representation of the results for the energy-

momentum tensor in terms of fluid dynamics will be helpful in the sequel. The true

hydrodynamic modes of black hole physics will also be discussed in this section.

4.1 First order hydrodynamics

Recall that the energy momentum tensor of a perfect relativistic fluid takes the follow-

ing form

Tab = ρuaub + p∆ab , (4.2)

where

∆ab = uaub + gab (4.3)
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is given in terms of the unit velocity vector uau
a = −1 and the metric. Conformal fluids

have energy-momentum tensor with zero trace and therefore ρ = 2p in three dimensions.

Deviations from the perfect fluid form are parametrized by adding appropriate viscosity

terms. Since the hydrodynamic velocity is ambiguous for non-equilibrium processes one

should make a (physically insignificant) choice. We will use the so called energy frame,

meaning that ua is the unit time-like eigenvector of Tab defined as

Tabu
b = −ρua (4.4)

Then, the energy-momentum tensor of a general relativistic fluid admits the following

decomposition (see, for instance, the textbook [26]),

Tab = ρuaub + p∆ab + Πab , (4.5)

where ρ, p are the corresponding energy density and pressure fields. Πab is a transverse

tensor, uaΠ
ab = 0, that describes the viscous part of the energy-momentum tensor of the

fluid, and, in general, it admits an expansion in the derivatives of ua,

Πab = Π
(1)
ab + Π

(2)
ab + · · · . (4.6)

First order hydrodynamics is concerned with the structure of Πab
(1) and is well studied.

In this case, using the energy frame, we have, [26],

Πab
(1) = −ησab − ζ∆ab(∇cu

c) , (4.7)

where

σab = 2∇<aub> (4.8)

expresses the symmetric, transverse and traceless part of Πab up to first derivatives in ua.

Here, we use the notation (adapted to three-dimensional fluids) of the bracketed second

rank tensor

A<ab> =
1

2

(

∆ac∆bd(Acd + Adc) − ∆ab∆cdAcd

)

, (4.9)

which is transverse, uaA
<ab> = 0, and traceless, gabA

<ab> = 0. The coefficients η and ζ

depend in general on ρ and they are called shear and bulk viscosity, respectively. Of course,

conformal fluids have ζ = 0, whereas the value of η depends on the particular case.

In this context, one may also consider the vorticity of the velocity vector field ua, which

is defined as follows,

Ωab =
1

2
∆ac∆bd(∇cud −∇duc) , (4.10)

and it is clearly antisymmetric. As will be seen shortly, axial and polar perturbations can

be distinguished from each other by their vorticity tensor field.

4.2 Formal identifications

Applying first order hydrodynamics to the perturbations of AdS4 black holes we arrive at

the following formal identifications regarding the shear viscosity coefficient:
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(i) Axial perturbations: using the energy-momentum tensor computed for axial per-

turbations with general boundary conditions and the associated metric on I , one easily

finds that the normalized time-like unit vector ua has components

ut = −1 , uθ = 0 (4.11)

and

uφ = − i

6mω
(l − 1)(l + 2)

(

3iω

Λ
I0 − I1

)

e−iωtsinθ ∂θPl(cosθ) (4.12)

within the linear approximation. Also, the corresponding energy density is

κ2ρ = −2mΛ

3
, (4.13)

as in the unperturbed black hole case.

Explicit computation shows that all components of Π
(1)
ab vanish within the linear ap-

proximation apart from

κ2Π
(1)
θφ =

1

2

(

3iω

Λ
I0 − I1

)

e−iωtsinθ[l(l + 1)Pl(cosθ) + 2cotθ ∂θPl(cosθ)] . (4.14)

Likewise, the computation of σab also shows that all its components vanish apart from

σθφ. The result turns out to be identical to Πθφ up to an overall factor that determines

the coefficient η of shear viscosity for axial perturbation. Direct comparison, within the

context of first order hydrodynamics, yields

κ2η =
3imωS

(l − 1)(l + 2)(I0 + S)
, (4.15)

where it is set for convenience

S =
(l − 1)(l + 2)

6m

(

3iω

Λ
I0 − I1

)

. (4.16)

As special case, we refer to axial perturbations satisfying perfectly reflecting boundary

conditions, I0 = 0, for which it turns out that

κ2η =
3imω

(l − 1)(l + 2)
. (4.17)

The axial perturbations have a vorticity field with non-vanishing component

Ωθφ = −Λ2ωs

9ω

(

3iω

Λ
I0 − I1

)

e−iωtsinθ Pl(cosθ) (4.18)

under general boundary conditions.

– 22 –



J
H
E
P
0
1
(
2
0
0
9
)
0
0
3

(ii) Polar perturbations: similar considerations for polar perturbations satisfying gen-

eral boundary conditions yield the normalized time-like unit vector with components

ut = −1 , uφ = 0 , (4.19)

and

uθ =
iω

4mΛ
(l − 1)(l + 2)J0e

−iωt∂θPl(cosθ) , (4.20)

whereas the corresponding energy density turns out to be

κ2ρ = −2mΛ

3
+ mΛ(R − iωsJ0)e

−iωtPl(cosθ) . (4.21)

Explicit computation of the tensor Π
(1)
ab yields

κ2Π
(1)
θθ =

1

8

(

12mR

(l − 1)(l + 2)
−
(

l(l + 1) +
6ω2

Λ

)

J0

)

e−iωt ×

[l(l + 1)Pl(cosθ) + 2cotθ ∂θPl(cosθ)] (4.22)

and

Π
(1)
φφ = −sin2θ Π

(1)
θθ , (4.23)

in agreement with its traceless property. All other components of Πab vanish within the

linear approximation. To compare with first order hydrodynamics we also compute σab and

find that its components vanish apart from σθθ and σφφ. Their expressions are proportional

to Πθθ and Πφφ, respectively, and comparison yields the following coefficient η of shear

viscosity for polar perturbations,

κ2η = − imΛ

2ω(l − 1)(l + 2)

(

12mR

(l − 1)(l + 2)J0
−
(

l(l + 1) +
6ω2

Λ

))

. (4.24)

The special case of polar perturbations with mixed boundary conditions R = iωsJ0,

which are supersymmetric partner to perfectly reflecting boundary conditions on the axial

perturbations, leads to the coefficient

κ2η =
3imω

(l − 1)(l + 2)
. (4.25)

This value is identical to the shear viscosity of axial perturbations with perfectly reflecting

boundary conditions.

The polar perturbations always have vanishing vorticity, which distinguishes them from

the axial perturbation.

4.3 True hydrodynamic modes

The hydrodynamic representation of the energy-momentum tensor of black hole perturba-

tions is just a convenient (yet formal) way to rewrite the results of the calculation. Never-

theless, there is a fundamental relation between the physics of black holes and relativistic

hydrodynamics that goes beyond first order and extends to higher order causal theories
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of fluid dynamics, [27 – 31]. The hydrodynamic equations can be thought as an effective

theory describing the dynamics of the system at large length and time scales. The true

hydrodynamic modes of black hole perturbations are identified by computing the retarded

two-point Green functions of the energy momentum tensor and finding their behavior at

zero spatial momentum for low frequencies (for an overview, see, for instance, [24], and

references therein). A rather general result has emerged in this context in recent years,

namely that the ratio of shear viscosity to the entropy density of a very large AdS black hole

assumes a universal value, [23]. More precisely, it turns out that the true hydrodynamic

modes have shear viscosity

κ2η =
m

rh
(4.26)

that is independent of l, and, therefore, the ratio of shear viscosity to entropy density is

η

s
=

4

r2
h

(

− 3

Λ

)

η =
1

4π
(4.27)

in units where Boltzmann’s constant and Planck’s constant are set equal to 1. This result

appears to be valid in all dimensions and it has been further argued that it provides an

absolute lower bound (known as KSS bound) for the ratio η/s of all substances in nature;

see also the general presentations [24] by the same authors.

The first example of true hydrodynamic modes is provided by purely dissipative modes

with frequencies

Ωs = −i
(l − 1)(l + 2)

3rh
, (4.28)

which turn out to belong to the spectrum of axial perturbations satisfying Dirichlet bound-

ary conditions, I0 = 0, up to O(1/r2
h) corrections, [8, 32]. Thus, for very large AdS4 black

holes the values Ωs are exact and the corresponding shear viscosity coefficient, as calculated

earlier, is

κ2η =
3imω

(l − 1)(l + 2)
=

m

rh
(4.29)

and yields the KSS value. Polar perturbations with mixed boundary conditions R = iωs

also admit purely dissipative modes with frequencies Ωs and yield the same result (4.29)

for very large black holes.

Another example of true hydrodynamic modes is provided by the complex values

of frequency

Ω± = ±
√

−Λ

6
l(l + 1) − i

(l − 1)(l + 2)

6rh
, (4.30)

which turn out to belong to the spectrum of polar perturbations satisfying mixed boundary

conditions R = 0, up to O(1/r2
h) corrections, [32]. Thus, for very large AdS4 black holes

the values Ω± are exact and the corresponding shear viscosity coefficient, as calculated

earlier, turns out to be

κ2η =
imΛ

2ω(l − 1)(l + 2)

(

l(l + 1) +
6ω2

Λ

)

=
m

rh
, (4.31)
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up to O(1/r2
h) corrections, and it yields the KSS value, as before. Axial perturbations with

mixed boundary conditions

I1

I0
=

3

Λ
iω

(

1 − ω

ωs

)

+
6m

(l − 1)(l + 2)
(4.32)

are supersymmetric partner to polar perturbations with R = 0 and as such they also admit

quasi-normal modes with complex frequencies Ω±. Comparison with the corresponding

shear viscosity coefficient yields the same result (4.31) for very large black holes.

Actually, one can easily show that the only supersymmetric partner boundary condi-

tions that yield

ηaxial = ηpolar , (4.33)

as computed explicitly in the previous subsection on general grounds, are (i) I0 = 0 and

R = iωsJ0, and (ii) I1/I0 given by equation (4.32) and R = 0; all other boundary conditions

yield ηaxial 6= ηpolar. Furthermore, by demanding

ηaxial = ηpolar = m/rh , (4.34)

it follows from the analysis above that the only allowed frequencies are Ωs and Ω±

when rh → ∞.

Gravitational perturbations associated to true hydrodynamic modes (of either type)

satisfying the above special boundary conditions will be particularly relevant in section 6.

5. Connection with the normalized Ricci flow on S2

The observation made in the literature, as result of numerical investigations, that very

large AdS4 black holes exhibit purely dissipative modes for axial perturbations satisfying

perfectly reflecting Dirichlet boundary conditions with frequencies (4.28), Ωs, calls for an

analytic explanation. The same set of modes also arise for polar perturbations satisfying

mixed boundary conditions that are supersymmetric partner to the axial perturbations of

very large AdS4 black holes with Dirichlet boundary conditions.

Recall at this point that there is a second order geometric evolution equation for metrics

on a Riemannian manifold driven by the Ricci curvature tensor,

∂ugµν = −Rµν , (5.1)

known as Ricci flow (see, for instance, the collection of selected works [33]). The volume

of space is not preserved under the evolution, but it is always possible to define a variant,

known as normalized Ricci flow, which is volume preserving. The Ricci flow for the class

of conformally flat metrics on S2,

ds2
2 = 2eΦ(z,z̄;u)dzdz̄ , (5.2)

takes the following form

∂uΦ = e−Φ∂∂̄Φ , (5.3)
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whereas the corresponding normalized Ricci flow on S2 with fixed area 4π is given by

∂uΦ = e−Φ∂∂̄Φ + 1 . (5.4)

The constant curvature metric provides the fixed point for the normalized Ricci flow

equation on S2. In fact, the canonical metric is reached from any given initial data after

sufficiently long time. It is instructive to examine the spectrum of linear perturbations

around this equilibrium state at late times, using small axially symmetric deformations of

the round unit sphere parametrized by ǫl(u)Pl(cosθ),

ds2
2 = [1 + ǫl(u)Pl(cosθ)]

(

dθ2 + sin2θdφ2
)

. (5.5)

It can be easily verified that the normalized Ricci flow yields the following characteristic

decay of metric perturbations, as u → ∞,

ǫl(u) = ǫl(0)exp
(

−u

2
(l − 1)(l + 2)

)

. (5.6)

Then, the spectrum of purely imaginary frequencies associated to the normalized Ricci flow

is given by

Ωs ∼ −i
(l − 1)(l + 2)

2
, (5.7)

up to a universal factor that depends on the physical scale of u and can be identified with

3rh/2 to match the values (4.28).

In view of this relation, it is natural to expect that there is an embedding of the (nor-

malized) Ricci flow into Einstein equations so that the resulting four-dimensional metric

describes a new radiative class of space-times. In this context, u should have the inter-

pretation of retarded time and the AdS4 black hole should arise as a fixed point (static)

configuration after all radiation has been damped away. Also, in this context, τs = 1/iΩs

should be the characteristic time scale, depending on l, for the multi-pole gravitational

radiation damping close to equilibrium. We do not expect this embedding to exist when

Λ = 0 nor to be exact in the non-linear regime when the size of the black hole is not very

large. This idea might be more natural to implement in the polar sector which resembles

the perturbations (5.5) in the spherical part of the four-dimensional metric.

It will also be interesting to have an analogous analytic explanation for the existence of

the complex frequencies Ω± in the quasi-normal mode spectrum of very large AdS4 black

holes. The boundary conditions are different in this case and, therefore, the geometric

framework that may account for their presence will not be the same.

6. Energy-momentum/Cotton tensor duality

In this section we describe the main application of the results for the energy-momentum

tensor of perturbed black holes. We first introduce the notion of Cotton tensor in three

dimensions, using the Chern-Simons gravitational action, and then compare the two ex-

pressions for suitably selected boundary conditions.
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6.1 Chern-Simons gravitational action

In three dimensions there is a quantity that remains invariant under local conformal changes

of the metric γab and vanishes if and only if the metric is conformally flat. It is provided

by the density
√

detγ Ca
b, where Cab is an odd parity tensor, called Cotton tensor,

Cab =
1

2
√
−detγ

(

ǫacd∇cR
b
d + ǫbcd∇cR

a
d

)

=
ǫacd

√−detγ
∇c

(

Rb
d −

1

4
δb

dR

)

(6.1)

with ǫtθφ = 1. The Cotton tensor is symmetric, traceless and identically covariantly con-

served. As such, it arises as functional derivative of a geometric invariant, namely the

three-dimensional gravitational Chern-Simons action, [34],

Cab =
1√−detγ

δSCS

δγab
, (6.2)

where

SCS =
1

2

∫

d3x
√

−detγ ǫabcΓd
ae

(

∂bΓ
e
cd +

2

3
Γe

bfΓf
cd

)

. (6.3)

SCS is an action of third order in the dynamical variables of the theory.

The gravitational Chern-Simons action on the boundary of asymptotically locally AdS4

backgrounds arises from the topological Hirzebruch-Pontryagin action on the bulk space-

time, namely
∫

d4x
√

−detgRabcd
⋆Rabcd =

1

2

∫

d4xǫabefRabcdRef
cd , (6.4)

since the integrant is a total derivative; the R ∧ R action enters into the definition of the

signature τ(M). When the perturbations of black holes satisfy general boundary conditions,

so that the boundary metric is not conformally flat, the corresponding Cotton tensor is

non-vanishing. Thus, adding SCS to the boundary action improves the boundary energy-

momentum tensor by the Cotton tensor and changes the characteristics of the fluid velocity

field in the hydrodynamic representation of the problem; for example, the polar sector,

which has no vorticity, acquires some by this modification. We will not pursue this general

connection further in the present exposition. Instead, we will restrict ourselves to the

rather curious observation that the Cotton tensor and the energy-momentum tensor of

black hole perturbations exhibit an axial-polar duality with respect to appropriately chosen

supersymmetric partner boundary conditions.

6.2 The new correspondence for black holes

We are now in position to establish the relation between the energy-momentum tensor of

black hole perturbations and the Cotton tensor of a dual boundary metric by studying

separately the polar and axial cases.
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(i) Polar perturbations: let us first consider the boundary metric for polar perturba-

tions of AdS4 black holes, which is given in general by

ds2
I (polar) = −dt2 − 3

Λ
[1 + Re−iωtPl(cosθ)](dθ2 + sin2θdφ2) . (6.5)

Straightforward computation shows that its Cotton tensor has the following non-

vanishing components,

Cθφ =
iω

4
Re−iωtsinθ[l(l + 1)Pl(cosθ) + 2cotθ ∂θPl(cosθ)] , (6.6)

Ctφ =
Λ

12
(l − 1)(l + 2)Re−iωtsinθ ∂θPl(cosθ) . (6.7)

As such, they resemble the perturbations of the energy-momentum tensor for axial pertur-

bations. In fact, choosing the overall constant

R =
2i

ω
I1 , (6.8)

the identification is exact provided that the energy-momentum tensor of axial perturbations

is evaluated at I0 = 0, in which case the corresponding boundary metric is conformally

flat,

ds2
I (axial) = −dt2 − 3

Λ
(dθ2 + sin2θdφ2) . (6.9)

Thus, using the dual boundary metrics (6.5) and (6.9), it follows that

Cab(polar) = κ2δTab(axial) (6.10)

for the supersymmetric partner boundary conditions

R = iωsJ0 , I0 = 0 (6.11)

respectively, so that ω stays the same on both sides of the equality.

(ii) Axial perturbations: next, we consider the boundary metric for axial perturbations

of AdS4 black holes, which is given in general by

ds2
I (axial) = −dt2 − 3

Λ

(

dθ2 + sin2θdφ2
)

+ 2
iI0

ω
e−iωtsinθ ∂θPl(cosθ) dtdφ . (6.12)

In this case, the Cotton tensor of the metric has the following non-

vanishing components

Ctt = −2mΛ2

3ω
ωsI0e

−iωtPl(cosθ) , (6.13)

Cθθ =
iΛ

6ω
l(l + 1)I0

(

1 +
3ω2

Λ

)

e−iωtPl(cosθ) +

+
iΛ

6ω
I0

(

l(l + 1) +
6ω2

Λ

)

e−iωtcotθ ∂θPl(cosθ) , (6.14)

Cφφ = − iΛ

6ω
l(l + 1)I0

(

l(l + 1) − 1 +
3ω2

Λ

)

e−iωtsin2θPl(cosθ) −

− iΛ

6ω
I0

(

l(l + 1) +
6ω2

Λ

)

e−iωtsinθcosθ ∂θPl(cosθ) , (6.15)

Ctθ =
Λ

6
(l − 1)(l + 2)I0e

−iωt∂θPl(cosθ) , (6.16)
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which resemble the perturbations of the energy-momentum tensor for polar perturbations.

The identification becomes exact choosing

I0 =
3iω

2Λ
J0 , (6.17)

provided that R = 0, in which case the corresponding boundary metric is conformally flat,

ds2
I (polar) = −dt2 − 3

Λ
(dθ2 + sin2θdφ2) . (6.18)

Thus, using the dual boundary metrics (6.12) and (6.18), it follows that

Cab(axial) = κ2δTab(polar) (6.19)

for the supersymmetric partner boundary conditions

R = 0 ,
I1

I0
=

3

Λ
iω

(

1 − ω

ωs

)

+
6m

(l − 1)(l + 2)
, (6.20)

respectively, so that ω is the same on both sides of the equality, as before. In this case, the

perturbations satisfy mixed boundary conditions on both sides of the relation.

Remarkably, the supersymmetric partner boundary conditions that realize the energy-

momentum/Cotton tensor duality for AdS4 black holes are only these ones with

shear viscosity

ηaxial = ηpolar . (6.21)

Thus, the true hydrodynamic modes of very large black holes with frequencies Ωs and

Ω±, which fit precisely in this framework, admit a new alternative description in terms

of the three-dimensional Chern-Simons gravitational action on the dual boundary. The

perturbations of the Schwarzschild metric at the conformal boundary, which arise on the

right-hand side of the correspondence (6.10) and (6.19), are simply zero,

δgµν |I = 0 . (6.22)

7. Conclusions

We have computed the boundary energy-momentum tensor of AdS4 black holes for gravita-

tional perturbations that satisfy arbitrary boundary conditions at spatial infinity. The (yet

mysterious) relation between the effective Schrödinger problems for axial and polar per-

turbations, which is best described by supersymmetric quantum mechanics, translates into

a duality between the energy-momentum and the Cotton tensor for appropriately chosen

boundary conditions at spatial infinity. This framework accommodates the hydrodynamic

modes of large AdS4 black holes, which satisfy the KSS bound η/s = 1/4π, and, as such,

it can be viewed as a new correspondence operating on this bound.

Some related remarks have also appeared recently in the literature, [35], and in partic-

ular [36] that introduces the notion of dual gravitons on general grounds, but their manifes-

tation in AdS4 black hole backgrounds has not been made explicit. The results also seem
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to be related to the (electric-magnetic) duality rotations of the linearized four-dimensional

Einstein equations, [37] (but see also [38] for earlier work), which are formulated with

no reference to Killing symmetries; for further discussion and generalizations (including

Einstein equations with cosmological constant) we refer the reader to the literature [39 –

41]. Clearly, these connections deserve further study that is left to future work. The

applications in AdS4/CFT3 correspondence at finite temperature in view of the proposed

correspondence with the gravitational Chern-Simons theory on the dual boundary will also

be investigated in detail in separate publication.

Finally, another interesting question that emerged in this context is the possibility to

construct exact radiative metrics of vacuum Einstein equations with negative cosmological

constant, which settle to large AdS4 black holes and account for the special frequencies

of their hydrodynamic modes upon linearization. If this expectation materializes, the

hydrodynamic modes will be extended in the non-linear regime and provide the gravity

dual of non-linear hydrodynamics in closed form. Embedding the Ricci flow into gravity

seems to play a role in this direction and it will also be investigated further in the future.
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Note added in v2. The bulk interpretation of the energy-momentum/Cotton tensor

duality was investigated further by the author in the recent paper [42]. There, it was found

that spherical gravitational perturbations of AdS4 space-time, which also split into axial

and polar classes, are simply interchanged by the electric/magnetic duality of linearized

gravity. In this simplified case, the axial and polar perturbations obey the same Schrödinger

problem and thus the same boundary conditions at spatial infinity. The electric/magnetic

duality of gravitational perturbations around AdS4 space-time applies to all possible bound-

ary conditions and it has holographic manifestation as energy-momentum/Cotton tensor

duality at the conformal infinity.

New features arise in the presence of black holes, since the axial and polar perturbations

satisfy supersymmetric partner Schrödinger problems. Also, it is not known whether the

electric/magnetic duality of linearized gravity in the bulk persists for perturbations around

non-trivial backgrounds, such as the AdS4 Schwarzschild solution. However, we believe that

there is a remnant of duality in the linearlized theory, which explains the supersymmetric
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partnership of the black hole perturbations, althought it might not be applicable to all

possible boundary conditions at spatial infinity. In fact, its validity might very well be

restricted to the special boundary conditions singled out in the present work and provide

the missing link for the bulk interpretation of the energy-momentum/Cotton tensor duality

for AdS4 black holes. In this context, the gravitational electric/magnetic duality will act

as symmetry of the KSS bound, in analogy with S-duality of BPS states of gravitational

theories; the same rational may also apply to the more general hydrodynamic relation

ηaxial = ηpolar under the previledged set of boundary conditions.

These problems require separate investigation, which we intend to present elsewhere

to illuminate their physical interpretation.

A. Coefficients of the asymptotic expansion

In this appendix we summarize the first few coefficients in the asymptotic expansion of

the metric functions arising in the perturbations of AdS4 black holes. These are the only

relevant terms for the computation of the boundary energy-momentum tensor under general

boundary conditions.

(i) Axial perturbations: the coefficients of the metric function h0(r) are

α0 = − iΛ

3ω
I0 , β0 = I0 , γ0 = −i

(l − 1)(l + 2)

2ω
I0 ,

δ0 =
l(l + 1)

2Λ
I0 −

i

3ω

(

(l − 1)(l + 2) +
3ω2

Λ

)

I1 , (A.1)

expressing them all in terms of I0 and I1 for convenience. Likewise, the coefficients of the

metric function h1(r) are

α1 = − 3

Λ
I0 , β1 = − 3

Λ
I1 . (A.2)

(ii) Polar perturbations: the computations are much more involved now and the ex-

pressions are quite cumbersome. The coefficients in the asymptotic expansion of H0(r)

turn out to be

A0 =

(

2i(ωs + ω) − 4mΛ

(l − 1)(l + 2)
+

ω2

mΛ
(l − 1)(l + 2)

)

J0 −
2Λ

3
J1 , (A.3)

B0 = (l − 1)(l + 2)

(

1 +
iω

mΛ

[

1 − 12m2Λ

(l − 1)2(l + 2)2

])

J0 +

+
(l − 1)(l + 2)

6m

(

(l − 1)(l + 2) +
6ω2

Λ
− 12iωm

(l − 1)(l + 2)

)

J1 , (A.4)

C0 =

(

−(l − 1)(l + 2)

4mΛ

[

l(l + 1) (l(l + 1) − 4) +
6ω2

Λ
(l − 1)(l + 2)

]

+

+
6m

(l − 1)(l + 2)

[

l(l + 1) − 4 +
6ω2

Λ

]

+
6iω

Λ

)

J0 + (A.5)

+

(

l(l + 1) − 4 +
6ω2

Λ
+

iω

2mΛ
(l − 1)(l + 2)

[

(l − 1)(l + 2) +
6ω2

Λ

])

J1 .
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Likewise, the coefficients in the asymptotic expansion of H1(r) are given by

A1 =

(

iω − 2mΛ

(l − 1)(l + 2)

)

J0 −
Λ

3
J1 , (A.6)

B1 =

(

l(l + 1) − 1 − 12m2Λ

(l − 1)2(l + 2)2

)

J0 −
(

iω +
2mΛ

(l − 1)(l + 2)

)

J1 , (A.7)

C1 = 3

(

m
l(l + 1) − 4

(l − 1)(l + 2)
+

iω

2Λ

[

l(l + 1) + 2 − 24m2Λ

(l − 1)2(l + 2)2

])

J0 +

+
1

2

(

l(l + 1) − 4 − 6iω

Λ

[

iω +
2mΛ

(l − 1)(l + 2)

])

J1 . (A.8)

Finally, the coefficients in the asymptotic expansion of K(r) are

R = −A1 , B =
3iω

Λ
A , (A.9)

A = −1

2

(

l(l + 1) − 24m2Λ

(l − 1)2(l + 2)2

)

J0 +

(

iω +
2mΛ

(l − 1)(l + 2)

)

J1 , (A.10)

C = − 1

4Λ

(

l(l + 1)

[

l(l + 1) − 12ω2

Λ
− 24m2Λ

(l − 1)2(l + 2)2

]

+

+ 12iωm

[

1 − 24iωm

(l − 1)2(l + 2)2

])

J0

+

(

m
l(l + 1)

(l − 1)(l + 2)
+

iω

Λ

[

1 − 6ω2

Λ
+

12iωm

(l − 1)(l + 2)

])

J1 . (A.11)

In all expressions above the results are described entirely in terms of the coefficients J0

and J1 for convenience, although this does not particularly simplify the lengthy formulae.

B. Energy-momentum tensor on ∂Mr

In this appendix we provide the intermediate results in the calculation of the boundary

energy-momentum tensor for perturbations of AdS4 black holes.

(i) Axial perturbations: holographic renormalization yields the following result for the

perturbations of the energy-momentum tensor on ∂Mr in terms of the corresponding metric

coefficients h0(r) and h1(r),

κ2δTtφ =

(

[

2

r

√

f(r) +
f ′(r)

2
√

f(r)
− 2

√

−Λ

3
+

√

− 3

Λ

(l − 1)(l + 2)

2r2

]

h0(r)−

−1

2

√

f(r)
(

h′
0(r) + iωh1(r)

)

)

e−iωtsinθ ∂θPl(cosθ) , (B.1)

κ2δTθφ = −1

2

(

√

f(r) h1(r) + iω

√

− 3

Λ

h0(r)

f(r)

)

e−iωt ×

×sinθ[l(l + 1) Pl(cosθ) + 2cotθ ∂θPl(cosθ)] , (B.2)

whereas the other components vanish.
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(ii) Polar perturbations: likewise, we obtain the following result for the perturbations

of the energy-momentum tensor on ∂Mr in terms of the corresponding metric functions

H0(r), H1(r) and K(r),

κ2δTtt = f(r)

(

[

3

r

√

f(r) − 2

√

−Λ

3
− 1

r2

√

− 3

Λ

]

H0(r) −
√

f(r) K ′(r)

+
(l − 1)(l + 2)

2r2

√

− 3

Λ
K(r)

)

e−iωtPl(cosθ) , (B.3)

κ2δTθθ =

(

[

r
√

f(r) +
r2f ′(r)

2
√

f(r)
− 2r2

√

−Λ

3
+

ω2r2

2f(r)

√

− 3

Λ

]

K(r)

+
r2

2

√

f(r) K ′(r) − iω
r2

√

f(r)
H1(r) −

r2

2

√

f(r) H ′
0(r)

− r

2

[

√

f(r) +
rf ′(r)

2
√

f(r)

]

H0(r)

)

e−iωtPl(cosθ)

− 1

2

√

− 3

Λ
H0(r)e

−iωtcotθ ∂θPl(cosθ) , (B.4)

κ2 δTφφ

sin2θ
=

(

[

r
√

f(r) +
r2f ′(r)

2
√

f(r)
− 2r2

√

−Λ

3
+

ω2r2

2f(r)

√

− 3

Λ

]

K(r)

+
r2

2

√

f(r) K ′(r) − iω
r2

√

f(r)
H1(r) −

r2

2

√

f(r) H ′
0(r)

− r

2

[

√

f(r) +
rf ′(r)

2
√

f(r)
− l(l + 1)

r

√

− 3

Λ

]

H0(r)

)

e−iωtPl(cosθ)

+
1

2

√

− 3

Λ
H0(r)e

−iωtcotθ ∂θPl(cosθ) , (B.5)

κ2δTtθ =
1

2

(

iω

√

− 3

Λ
K(r) +

√

f(r) H1(r)

)

e−iωt∂θPl(cosθ) . (B.6)
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